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A Preview of Act I

Henry Lieberman

Artificial Intelligence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

Section 1. The actor philosophy

1.1 Introduction

The Message Passing Semantics Group at MIT has been concerned with developing
formalisms for expressing computations which meet the needs of artificial intelligence.
Recently, theres been an important change of viewpoint in Al from modeling the
kind of intelligence that is found in a single individual, towards modeling the kind of
problem solving done in a society of people. We believe that organizing programs as
cooperating individuals in a society will require a radical departure from the
traditionally accepted models of computation.

To address the requirements of Al programming, we have developed a model of
computation based on the notion of an actor. An actor is an active object which

* communicates with other actors by sending messages To test out our theory, we
have implemented an - experimental programming language for constructing actor
systems called Act L.

1.2 Actors meet the requirements for organizing programs as societies

What capabilities are needed in a computational model to construct models of
intelligent processes as a society of cooperating individuals? This section will present
a number of principles which our experience has led us to believe are requirements
which should be satisfied by any system claiming to be suitable for constructing
intelligent programs, The remainder of the paper will show how these issues have (
been addressed specifically in our experimental actor implementation Act L.

A Prvietw of Act 1 1.2 Acters mnet fts o~wmri for aqUwZWIV propun as socities
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A more detailed discussion of the philosophy and implementation of Act I can be
'ound in the companion paper [21

1.1 Traditional techniques for parallells have been inadeqate

Any language which allows parallelism must provide some way of creating and
destroying parallel activities, and some means of communicating between them. Most
of the traditional techniques for parallelism which have grown out of work in
operating systems and simulation share these characteristics:

Usually, only a fixed number of parallel processes can be created, and processes
cannot be created by programs as they are running. Processes usually must be
explicitly destroyed when no longer needed. Communication between processes takes
the form of assignment to memory cells shared between processes

We propose that parallel processes be represented by actors called futures [71
Futures can be created dynamically and disappear by garbage collection rather than
explicit deletion when they're no longer needed. Communication between processes
takes place using shared actors called serializers, which protect their internal state
against timing errors.

Section 2. Creating parallelism with futures

.2.1 Dynamlc allocation of processes parallels dynamic allocation of storage

Act 1 solves the problem of allocating processes by extending Lisp's solution to the
problem of allocating storage.

Languages like Fortran and machine languages take the position that storage is only
allocated statically, in advance of the time when a program runs. Once allocation is
made, it cannot be released, even though it may no longer be needed.

The inflexibility of static storage allocation led Lisp to a different view. With Lisp's
coNs, storage magically appears whenever you need it, and the garbage collector
magically recovers storage when it's no longer accessible. Even though the computer

Pwialillam In Act I 2.A Dynamic allocatlon of p oceas pallels dynami allocation of storage
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only has a finite number of storage locations in reality, the user can pretend that
memory is practically infinite.

We propose that parallel processes be allocated dynamically rather than statically.
We will introduce actors called futures which represent parallel computations. There
is a primitive which magically creates them whenever you need them When they're
no longer necessary, they get garbage collected, when they become inaccessible. The
number of processes need not be bounded in advance, and if there are too many
processes for the number of real physical processors you have on your computer
system, they are automatically time shared, Thus the user can pretend that processor
resources are practically infinite.

Machine languages communicated between procedures by using the registers of the
machine, memory shared by the 'communicating procedures. Fortran procedures
sometimes communicate through assignment to shared variables. This causes
problems because a memory location shared between several users can be
inadvertently smashed by one user, violating assumptions made by other users about
the memory's contents.

Lisp uses the control structure of function ca//s and returns, procedures
communicating by passing arguments and returning values. A process creating a
future actor communicates with the future process by passing arguments, and the
future process communicates with its creator by returning a value. We discourage
explicit deletion of processes for the same reason we discourage explicit deletion of

* storage. If two users are both expecting results compted by a single process, then if
one user is allowed to destory the process unexpectedly, it could wreak havoc for the
other user.

2.2 Futures are actors representing the results of parallel computations

Act I provides a primitive HURRY which takes something to be computed, and which
creates a future actor which represents the value of that computation. A future is
like a promise or I.O.U. to deliver the value when it is needed

HURRY always returns a future actor immediately, regardless of how long the
computation will take. HURRY creates a parallel process to compute the value, which
may still be running after the future is returned. The user may pass the future
around, or perform other computations, and these actions will be overlapped with the
computation of the futures value.

Parafleifllain nAct 1 2.2 Fubwos am actors vr...MNtl So roadt of paallel cowwutatlona
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From the viewpoint of a user program, the future actor is indistinguishable from the
value itself. The user of the future need not care that the value was computed by a
parallel process. The only difference is that, on a parallel machine, it can be
computed more quickly. The behaviour of a future actor is arranged so that if
computation of the value has been completed, the future will act identically to the
value. If the future is still running, it will delay the sender long enough for the
computation to run to completion.

Futures are especially useful when a problem can be broken up into independent
subgoalzs If the main problem requires several subgoals for its solution, and each
goal can be pursued without waiting for others to finish, the solution to the problem
can be found much faster by allocating futures to compute each subgoaL

Define SOLVE- INDEPENDENT-SUBGOALS:
Call COMBINE-RESULTS-OF-SUBGOALS on the result of
Creating a FUTURE to solve INDEPENDENT-SUBGOAL-I, and
A FUTURE trying to solve INDEPENDENT-SUBGOAL-2.

The futures for each subgoal will return immediately. Since the computation of each
* . subgoal will presumably take a long time, the computation of the subgoals will

overlap with each other and with the procedure combining their results.

How do we know when the value that the future returns will really be needed by
someone else? In the actor model, that's easy - the only way another actor may do
anything with the value is to send it a message So, whenever any other actor sends
a message to a future, we require that the future finish computing before a reply
can be sent. If the value is requested before the future is ready, the caller must
wait for the future to finish before getting the answer. When the future does finish,
it stashes the answer away inside itself, and thereafter behaves identically to the
answer, passing all incoming messages through to the answer.

A nice aspect of using futures is that the future construct packages up both the
creation of parallel processes and synchronization of results computed by the
processes. The parallelism and corresponding synchronization are always correctly
matched with one another. This promotes more structured parallel programs than
formalisms in which you describe the creation of parallel processes and their
synchronization independently, opening the possibility that there may be some
mismatch between parallelism and synchronization.

The property of being able to transparently substitute for any actor whatsoever a

Parallellilms In Act 1 2.2 Fuie wo actors reproseatlg ill reallet of parallel €og|utatlons
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future computing that actor is crucially dependent on the fact that in Act 1,
everything is an object and all communication happens by message passing. This
cant be done in less radical languages like Clu and Simula, which do have some
provision for objects and message passing, but which don't treat everything that way.
A future whose value is a built-in data type like numbers or vectors could not be
used in a place where an ordinary number or vector would appear.

Futures can be used in Act 1 in conjunction with Lisp-like list structure, to
represent generator processes. Suppose we have a procedure that produces a sequence
of possibilities, and another procedure that consumes them, and we would like to
overlap the production of new possibilities with testing of the ones already present

We can represent this by having the producer come up with a list of possibilities,
and the consumer may pick these off one by one and test them. This would work
fine if there were a finite number of possibilities, and if the consumer is willing to
wait until all possibilities are present before trying them out But with futures, we
can simply change the producer to create futures for the list of possibilities, creating
a list which is growing in time, while the possibilities are being consumed.

Define PRODUCER:
If there are no more POSSIBILITIES,
return the EMPTY-LIST.
If some possibilities remain,
Create a list whose FIRST is:
a FUTURE computing the FIRST-POSSIBILITY,

and whose REST is:
a FUTURE computing the rest of the possibilities by calling PRODUCER.

Def ine CONSUMER, consuming a list of POSSIBILITIES:
Test the FIRST possibility on the POSSIBILITIES list,
Then call the CONSUMER on the REST of the POSSIBILITIES list.

The consumer can use the list of possibilities as an ordinary list, as if the producer
had produced the entire list of possibilities in advance. The consumer need not
know the possibilities are being computed in paralleL We could get even more
parallelism out of this by having the consumer create futures, testing all the
possibilities in parallel

On a machine with sufficiently many processors, the most radical way to introduce
parallelism would be to change the interpreter to ewluate arguments in parallel.

ParaUCllsm In Act 1 2.2 FPUS,. wen ors rnsmng Ur reulmft of paralle conptltfon.
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Making this eager beaver evaluator would require just a simple change to create a
future for the evaluation of each argument to a function. We haven't done this in
our current implementation of Act I because processes are still a bit too expensive
on our serial machine to make it the default to create them so frequently. Instead,
we 'require that the parallelism be explicitly indicated

Futures are more powerful than the alternative data flow model proposed by Dennis
[331 In the dataflow model, arguments to a function are computed in parallel, and
a function is applied only when all the arguments have finished returning values.
Lees say we're trying to compute the SUN of FACTORIAL of 18, FACTORIAL of 29 and
FACTORIAL of 30, each of which is time consuming, In dataflow, the computations of
the factorial function can all be done in parallel, but SUN can't start computing until

* all the factorial computations finish.

If futures are created for the arguments to a function, as can be done in Act 1, the
evaluation of arguments returns immediately with future actors. The function is
applied, with the future actors as arguments, without waiting for any of them to run
to completion. It is only when the value of a particular argument is actually needed
that the computation must wait for the future to finish.

In our sum-of-factorials example, imagine that the first two factorials have finished
but the third has not yet returned. Act 1 allows sum to begin adding the results of
FACTORIAL of le and FACTORIAL of 20 as soon as they both return, in parallel with
the computation of FACTORIAL of 30. So Act 1 allows overlap of application of a
function with computation of arguments in a way that dataflow doesn't.

2.3 Explicit deletion of processes considered harmful

Notice that there are some operations on futures that we don't provide, although
they sometimes appear in other parallel formalisms. There's no way to ask a future
whether he has finished yet Such a message would violate the property of futures
that any incoming message forces him to finish, and that wrapping futures around
values is completely transparent It would encourage writing time and speed-
dependent programs.

There's no way to stop a future before the future has returned a value. Continuing
the analogy with list storage, we believe that explicitly stopping or destroying
processes is bad for the the same reason that deleting pointers to lists would be bad

Peralltlllu In Act 1 2.3 Epilclt dlton of processes coneklerd harwirl
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in Lisp, Deleting a process that somebody else has a pointer to is just as harmful as
deleting a list pointer that is shared by somebody else, Its much safer to let
deletion happen by garbage collection, where the system can automatically delete an
object when it can be verified that if s no longer needed by anybody.

We don t exclude the possibility of providing such lower level operations as examining
and destroying processes for the purposes of debugging and implementation, but they
should not be routinely used in user programs. A safer way of being able to make a

* decision such as which of two processes finished first is to use Act I's serializer
primitives which assure proper synchronization.

* 2.4 How does Act I Implement futures?

Futures are the actors by which Act I introduces parallel processes into a
computation. What is a process, anyway? There are many conflicting definitions of
the term process in the computer science literature, all somehow intended to capture
the notion of parallel computation. We introduce a technical definition of process
which is independent of physical processors, address spaces, or other implementation
details.

In the actor model, a process consists of a message actor, a target actor, who is
receiving the message, and a reply continuation, who expects to receive the result of

* the computation. The operation of an Act I interpreter is to repeatedly invoke the
scrip, a program associated with the target, and produce a new message, target, and

*reply. (Details of Act I's operation are elaborated in [21) In an actor system, at any
moment many targets may be receiving messages at the same time, hence many
processes may be operating in parallel.

In a real parallel processor machine, creating a new process would mean finding a
*physical processor wilting to perform the computation. In our single processor

implementation, another process object is added to the list of processes which share
the physical processor.

When the future receives a message intended for its value, there are two cases,
depending on whether the computation is still running or not. The future needs a
flag to distinguish these cases. If it is running, the sender must wait until the
computation finishes. When the future finishes, it sets the flag, and remembers the
answer to the computation in a memory cell. Any messages sent to the future are
then relayed to the stored answer.

Paratteism" In Act 1 2.4 HM" do". Act I hi,4.,,nt futures?
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Define HURRY, creating a FUTURE evaluating a FORM:
Create a CELL which initially says that the future Is RUNNING.
Create a CELL for the ANSWER to which the form will eventually evaluate.
Create a PROCESS, and start it to work computing the value of the FORM,

Then send the VALUE of the FORM to the continuation FINISH-FUTURE.

If I 'm a FUTURE, and I get a request:
I check my RUNNING cell.
If it's TRUE, the sender waits until it becomes FALSE.
Then, I pass the message along to my ANSWER cell.

Define FINISH-FUTURE, receiving a VALUE for the FORM:
I receive the ANSWER to the computation started by HURRY.
Update the RUNNING cell to FALSE, indicating the future has finished.
Put the VALUE in the FUTURE's ANSWER cell.
Cause the process to commit SUICIDE, since it is no longer needed.

2.5 Aren't futures going to be terribly Inefficient?

4 Advocates of more conservative approaches to parallelism might criticize our

proposals on the grounds that futures are much too inefficient to implement in
practice. Allocating processes dynamically and garbage collecting them does have a
cost over simpler schemes, at least on machines as they are presently designed.
Again, we make the analogy with list structure, where experience has shown that the
benefits of dynamic storage allocation are well worth the cost of garbage collection.

Trends in hardware design are moving towards designs for computers that have
many, small processors rather than a single, large one. We think the challenge in

* . -designing languages for the machines of the near future will come in trying to make
effective use of massive parallelism, rather than in being excessively clever to
conserve processor resources.

One source of wasted processor time comes from processes that are still running
using up processor time even though they are no longer needed, before they are
reclaimed by the garbage collector. This is analogous to the fact that in Lisp,
storage is sometimes still unavailable between the time that it becomes inaccessible
and the time it is reclaimed by the garbage collector. This is a cost that can be
minimized by a smart incremental real time garbage collector for processes like that
of Henry Baker, or the one we are proposing for the Lisp Machine [25).

Perallegliamn In Act 1 2.6 Aren'tlubures oing to be terriy Ineffiloen?
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We intend that processes be cheap and easy to create, a basic operation of the
system just like message passing. We have taken care to see that a process doesn't
have a tremendous amount of state information or machinery associated with it.
The state of a process is completely described by the target actor, the message actor,
and the continuation actors. If this information is saved, the process can be safely
interrupted or may wait for some condition to happen while other processes are
running, and be resumed later.

This makes processes more mobile It is easy to move a process from one processor
to another, or time share many processes on a single processor. Multiple processor
systems may need to do dynamic load balancing or time sharing when there are
more conceptual processes than physical processors.

Section 3. Serlalizers are actors which restrict parallelism

3.1 Why is parallel programming different from all other programming?

There's a whole class of errors which arise in parallel programming which don't show
up in sequential programming- timing errors Timing errors occur when one process
looks at the state of an actor, takes some action on the implicit assumption that the
state remains unchanged, and meanwhile, another process modifies the state,
invalidating the data.

Timing errors are possible when parallel programs use changeable actors incorrectly.
An changeable actor has an internal state which he may modify, causing a state
change (or side effect). Changeable actors have the ability to change who their
acquaintances are. An actor is changeable if the same message can be sent to him
on two different occasions and result in different answers.

Suppose we would like to implement a global data base for use in a parallel program,
like the blackboard of the speech understanding system Hearsay [301 In general, Act
1 discourages global data bases, since the knowledge should be distributed, each actor
knowing only what's relevant to him. Global data bases are sometimes used when
programs may gather unexpected information. If the structure of the information
cannot be known in advance and there's no way of predicting which actors might be
interested in knowing the information, a central place for new information can be
helpful

Parallellism In Act 1 3.1 Why Is parallel programming dlfferet from all other programu nwn
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The blackboard actor will receive a message ASSERT which adds new information, and
a CONTENTS message which reads out the contents of the blackboard. The ASSERT
operation may include a step to COMBINE the new assertion with previous knowledge,
either to check that the new assertion is consistent with what is already known, or
to index the new assertion for speedy retrieval Suppose we implement the
blackboard as follows:

Define a BLACKBOARD:
with an acquaintance named CONTENTS. containing the facts in the data base.

If I'm a BLACKBOARD actor and I get an ASSERT message with a NEW-FACT,
I read out my current CONTENTS, call that CONTENTS-BEFORE-ASSERTION.

I oombine the NEW-FACT with the CONTENTS-BEFORE-ASSERTION,
to get the CONTENTS-AFTER-ASSERTION.

And I update my CONTENTS to be CONTENTS-AFTER-ASSERTION.

Looks simple, doesn't it? What could possibly go wrong? Nothing, if we're on a
serial computer, but consider what can happen when two processes running in parallel
each decides to try to ASSERT a new fact in the blackboard.

USER-I sends ASSERT NEW-FACT-i to a BLACKBOARD.
The BLACKBOARD is initially EMPTY.

USER-i combines NEW-FACT-i with the EMPTY blackboard.
Now, USER-Z sends ASSERT NEW-FACT-Z to the BLACKBOARD.

[USER-2 is running in parallel with USER-i.]
*USER-2 combines NEW-FACT-2 with the EMPTY blackboard.

(The BLACKBOARD is still EIPTY.]

USER-i updates the CONTENTS of the BLACKBOARD to be:
A data base containing only NEW-FACT-i.

USER-2 updates the CONTENTS of the BLACKBOARD to be:
A data base containing only NEW-FACT-2.

and NEW-FACT-I is lost!

3.2 Serlalizers are needed to protect the state of chaniteable actors
Why did a timing error occur when we attempted a straightforward implementation

of the blackboard? The problem is that there's an implicit assumption that the

Pwarlellism In Act 1 3.2 Setllzer we ieeil to protecl gho stWte of dMI1sctlos
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contents of the blackboard remains constant during the entire ASSERT operation. In
a serial environment, that's no problem, but in a parallel one, that assumption gets
violated by the other user, running in parallel, who smashes the memory while the
first process isn't looking.

Another problem might arise if there had been several state variables instead of just
one We would like to keep the entire set of variables consistent, and might have
the problem that different processes might be assigning different variables
simultaneously.

Instead of letting the state of the blackboard be passively manipulated by its users,
let's replace him with a more active object which responds to messages to perform
the ASSERT operation. To insure that the state remains the same during the entire
operation, we should be able to stipulate that processes should take turns performing
the ASSERT operation. When one process sends a message, he should run until that
message receives a reply that the operation is complete before another process gets a
chance to get through. This facility is provided by an actor called ONE-AT-A-TImE.

ONE-AT-A-TIME is a kind of serializer, an actor which restricts parallelism by forcing
certain events to happen serially. ONE-AT-A-TIME creates new actors which are
protected so that only one process may use the actor at a time. A ONE-AT-A-TIME
actor holds his state in a set of state variables which are defined locally to himself
and are inaccessible from outside. He also has a script for receiving messages, and
as a result of receiving a message, he may decide to change his state. When a
message is received, he becomes locked until the message is handled and possibly, the
state is changed, then he becomes unlocked to receive another message.

Define PROTECTED-BLACKBOARD:
Create a ONE-AT-A-TIME actor,
Protecting the unprotected BLACKBOARD.

If we send AS3SE.RT messages now to the PROTECTED-BLACKBOARD, timing errors cannot
arise. We could assure, through delegation, that actors which have internal state
which should be protected against interference by competing processes like data bases
or graphical objects always are created with their state surrounded by ONE-AT-A-TIME.

The ONE-AT-A-TIME actor embodies the same basic concept as Hoare's monitor idea
[321 ONE-AT-A-TIME has the advantage that it allows creating protected actors
dynamically rather than protecting a lexically scoped block of procedures and
variables. The actors created by ONE-AT-A-TINE are first-class citizens They may be !

Paralletllsm In Act 1 3.2 Serlall are needed to protect te slate of cligable actors
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created interactively at any time by a program, passed around as arguments, or
returned as values, in a manner identical to that of any actor.

3.3 GUARDIANs can do more complex synchronization than ONE-AT-A-TIME

There are some kinds of synchronization which are not possible to achieve simply
with ONE-AT-A-TIME. ONE-AT-A-TINE has the property that a reply must be given to a
incoming message before possession is released and another message from a different
process can be accepted. Sometimes a bit more control over when the reply is sent
can be usefuL The reply might sometimes have to be delayed until a message from
another process gives it the go-ahead signal In response to a message, it might be
desired to cause a state change, release possession and await other messages, replying
at some later time.

Imagine a computer dating service which receives requests in parallel from many
customers. Each customer sends a message to the dating service indicating what
kind of person he or she is looking for, and should get a reply from the dating
service with the name of his or her ideal mate. The dating service maintains a file
of people, and matches up people according to their interests Sometimes, the dating
service will be able to fill a request immediately, matching the new request with one
already on file. But if not, that request will join the file, perhaps to be filled by a
subsequent customer.

The dating service is represented by an actor with the file of people as part of its
state. If an incoming request can't be filled right away, the file of people is
updated. The possession of the dating service actor must be released so that it can
receive new customers, but we can't reply yet to the original customer because we
don't know who his or her ideal mate is going to be!

The actor GUARDIAN provides this further dimension of control over how
synchronization between processes takes place. When a message cannot be replied to
immediately, the target actor will save away the means necessary to reply, continue
receiving more messages, and perform the reply himself when conditions are right.

To do this, GUARDIAN makes use of the actor notion of continuations. Since the
continuation encodes everything necessary to continue the computation after the
reply, the GUARDIAN can remember the continuation, and reply to it later. GUARDIAN
is like ONE-AT-A-TIE, but the continuation in messages sent to him is made explicit,

- 4I
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to give the GUARDIAN more control over when a reply to that continuation may occur.

ONE-AT-A-TIME can be easily implemented in terms of GUARDIAN.

Here's the code for the computer dating service.

Define COMPUTER-DATING-SERVICE:
Create a GUARDIAN actor,
whose internal state variable is a FILE-OF-PEOPLE.

If I 'm a COMPUTER-DATING-SERVICE and I get a message from a LONELY-HEART
with a QUESTIONNAIRE to help find an IDEAL-RATE:
Check to see if anyone in the FILE-OF-PEOPLE matches the QUESTIONNAIRE.

If there is, reply to the LONELY-HEART the name of his or her IDEAL-RATE,
and reply to the IDEAL-KATE the name of the LONELY-HEART.

Otherwise, enter the LONELY-HEART In the FILE-OF-PEOPLE,
and wait for a request from another LONELY-HEART.

What really happens in the implementation if more than one process attempts to use
a GUARDIAN actor at once? Each such actor has a wailing line associated with him.
Messages coming in must line up and wait their turn, in first-come-first-served order.
If the GUARDIAN is not immediately available, the process that sent the message must
wait, going to sleep until his turn in line comes up, and the GUARDIAN becomes
unlocked. Then, the message is sent on through, and the sender has no way of
knowing that his message was delayed. Each message may change the internal state
of the actor encased by the guardian.

fDefine GUARDIAN, protecting a RESOURCE, which has its own internal state:
Each GUARDIAN has a WAITING-LINE, and
A memory cell saying whether the RESOURCE is LOCKED, initially FALSE.

If I'm a GUARDIAN, and I get a MESSAGE,
If I'm LOCKED, the sender must wait on the WAITING-LINE until
I'm not LOCKED and the sender is at the front of the WAITING-LINE.

Set the LOCKED flag to TRUE.

Send the RESOURCE the incoming MESSAGE,
Along with the REPLY-TO continuation that came with the MESSAGE,
so the RESOURCE can send a reply for the MESSAGE.

The RESOURCE might update his Internal STATE as a result of the MESSAGE.
Then, set the LOCKED flag to FALSE,
letting in the next process on the WAITING-LINE, If there is one. (

Pwallellism In Act 1 3.3 GUAROIANs can do mare aoylx syndonltatlm Owin ONE-AT-A-TIME
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3.4 Waitingt rooms have advantages over busy waiting

Several situations in implementing the parallel facilities of Act 1 require a process to
wait for some condition to become true. If a message is received by a future before
it finishes computing, the sender must wait for the computation to finish. If a
message is received by a guardian while it is locked, the sender must wait until the
guardian becomes unlocked, and the sender's turn on the queue arrives. If a message
is received by some actor which provides input from some device like a terminal or
disk, the input requested may not be available, so the requesting process must wait
until such time as the input appears.

One way to implement this behaviour is by busy waiting. When a process must wait
for some condition, it goes into a loop, repeatedly checking the condition. The
process can proceed only when the condition becomes true.

Busy waiting is a bad idea because it is subject to needless deadlock The outcome
of a condition is sensitive to the time at which the condition is checked. If the
condition becomes true for a while, then false again, it's possible the condition won't
be checked during the time it is true. The process will fail to leave the busy
waiting loop when it should. Since one process which is waiting might depend upon
another's action to release it, failing to detect the release condition for one process
can cause a whole system containing many processes to grind to a halt Another
disadvantage of busy waiting is that repeated checking of conditions wastes time. It
is inefficient to check conditions even when nothing has changed that might affect
the conditions.

A preferable technique for implementing wait operations is to have wailing rooms.
When too many people try to visit the dentist at the same time, they must amuse
themselves sitting in a waiting room listening to muzak and reading magazines until
the dentist is ready to see them, then they can proceed. Except for the time delay
caused by the interlude in the waiting room, their interaction with the dentist is
unaffected by the fact that the dentist was busy at first

Our waiting rooms are lists of processes which are waiting for some condition to
happen. When a message is sent to some actor who wants to cause the sender to
wait, he places the sending process in a waiting room, including the sender's
continuation, which contains all information necessary to reply to the sender. It is
the responsibility of the actor which enters a sender in a waiting room to decide
when the condition is true. When he signals the condition true, everybody waiting
for that condition in a waiting room receives a reply.

Palle.,,am In Act 1 3.4 Wa&tin room have advantages over btsy wettg
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With waiting rooms, conditions are not checked repeatedly, and there's no danger of
overlooking an occurrence of the release condition. Act I does not provide a general
WAIT primitive which accepts any boolean condition, as some other formalisms do.
The only kinds of conditions that are safe from unwanted deadlock are one-shot
conditions, which never become false once they become true Act I's primitives are

* implemented only using these kinds of conditions. Even if the implementation
language's low level primitives use busy waiting for synchronization, we could still
implement Act l's primitives safely. If we had a WAIT primitive, there would be no
way to enforce the constraint on waiting conditions. Any waiting in Act 1 happens
as a result of sending messages to a future or serializer, which use waiting rooms.

Waiting rooms do introduce a problem with garbage collection, however. In order
for an actor with waiting room to wake up a waiting process, it must know about
(have a pointer to) that process. If the only reason a process is held onto is that it
has requested something which isn't immediately available, that process is really no
longer relevant But the waiting room pointer protects the process from garbage
collection. Waiting rooms should be implemented using weak pointers, a special kind
of Lisp pointer which doesn't protect its contents from garbage collection.

j3.5 RACE Is a parallel generalization of Lisp's list structure

For creating an ordered sequence of objects, Lisp uses the elegant concept of list
structure, created by the primitive conS. For creating sequences of objects which are
computed in parallel, and which are ordered by the time of their completion, we
introduce an actor called PACE. RACE is a convenient way of collecting the results of

* several parallel computations so that each result is available as soon as possible

CONS produces lists containing elements in the order in which they were given to
CONS RACE starts up futures computing all of the elements in parallel It returns a
list which contains the values of the elements in the order in which they finished
computing. Since lists constructed by RACE respond to the same messages as those
produced by CONS, they are indistinguishable from ordinary serial lists as far as any
program which uses them is concerned.

If we ask for the FIRST or REST (CAR or CDR) of the list before it's been determined
who has won that race, the process that sent the message waits until the outcome of
the race becomes known, then gets the answer. This is just like what happens if we
send a message to a future before the future has finished computing a value. (The
RACE idea is similar to the ferns of Friedman and Wise [281)

Parallollsm In Act 1 3.5 RACE Is a Parallel generalIzaIon of LIsp's list stnJctwe
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Using RACE, we can easily implement a parallel version of OR, helpful if we want to
start up several heuristics solving a problem, and accept the result of the first
heuristic to succeed in solving the problem. PARALLEL-Of starts evaluating each of a
set of expressions given to it, in parallel, and returns the first one which evaluates
TRUE, or returns FALSE if none of the expressions are TRUE.

We just create a RACE list, whose elements are the evaluated disjunct expressions
This searches all the disjuncts concurrently, and returns a list of the results A
simple, serial procedure runs down the list, returning the first TRUE result, or FALSE if
we get to the end of the list without finding a true result. Since the elements of
the list appear in the order in which they finish evaluating, as soon as a true element
is found by any one of the disjuncts, it will be found by the procedure checking the
results, and the PARALLEL-OR will return.

All evaluations which might still be going on after a TRUE result appears become
inaccessible, and those processes can be garbage collected. We donet need to
explicitly stop the rest of the disjuncts. If there are still processes running and we
haven't found a TRUE value yet, the procedure checking the results will wait.

Define PARALLEL-OR of a set of DISJUNCTS:
Start up a RACE list evaluating them In parallel using EVALUATE.?DISJUNCTS.

Examine the results which come back using EXAMIRE-DISJUNCTS

Define EVALUATE-DISJUNCTS, of a set of DISJUNCTS:

If the set is empty, return the empty list.

Otherwise, break up the disjuncts into FIRST-DISJUNCTS and REST-DISJUNCTS.
Start up a RACE between

testing whether the evaluation of FIRST-DISJUNCT results in TRUE, and

doing EVALUATE-DISJUNCTS on the REST-DISJUNCTS list.

Define EXAMINE-DISJUNCTS, of a list of clauses from EVALUATE -DISJUNCTS:

If the list is empty, return FALSE as the value of the PARALLEL-OR.

If not, break the list up into FIRST-RESULT and REST-RESULTS.

If FIRST-RESULT is true, return it as the value of the PARALLEL-OR.

Otherwise, do EXAMINE-DISJUNCTS on the REST-RESULTS list.

As another illustration of the use of RACE, consider the problem of merging a
sequence of results computed by parallel processes. If we have two lists constructed
by RACE whose elements appear in parallel, we can merge them to form a list
containing the elements of both lists in their order of completion. The first element

Parallollism In Act 1 3.5 RACE Is a paallel fwrafllzatio of Lip' Nei slilwe
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of the merged list appears as the first of a RACE between the first elements of each
list. This leads to a simple recursive program to merge the lists, which is similar to
a program which interleaves the elements of two serial lists,

Define MERGE-LISTS of ONE-LIST and ANOTHER-LIST:
Return a RACE between
The first element of ONE-LIST, and
the result of MERGE-LISTS on ANOTHER-LIST and the rest of ONE-LIST.

The implementation of RACE is a bit tricky, motivated by trying to keep RACE
analogous to CON& RACE immediately starts up two futures, for computing the FIRST
and REST. The outcome of RACE depends upon which future finishes first. We use a
serializer to receive the results of the two futures and deliver the one that crosses
the finish line first.

First, let's look at the easy part, when the future for the FIRST element finishes
before the future for the REST finishes. At that time, we can declare the race over,
and the race actor can reply to FIRST and REST messages sent to him. When he gets
a FIRST message, he should reply with the value of the first argument to RACE, the
actor that won the race. When he gets a REST message, he can reply with the future
computing the second argument to RACE, even though that future may still be running.

The more difficult case is when the REST future finishes first. We have to examine
the value returned by the REST future to decide how to construct the list. The
trivial case occurs when the REST future returns THE-EMPTY-LIST. A RACE whose REST
is empty should produce a list of one element just like a CONs whose rest is empty.

* If the value of the REST future isn't empty, then we can assume he's a list, and the
trick is to get him to work in the case where he's a list produced by RACE. So we
ask that list for his first element. If the list was produced by RACE, this delivers the
fastest element among those that he contains. This element then becomes the first
element of the RACE list node that's being constructed. The FIRST future, still
running, must RACE against the remaining elements of the list to produce the REST of
the final RACE list When the computation of an element which appears farther
down in the list outraces one which appears closer to the front of the list, he
percolates to the front, by changing places with elments that are still being
computed.

Ptaetllsm In Act 1 3.5 PACE Is a parallel pseizallon of LIsp' lII st ncwe
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Define RACE, of a FIRST-FORM and REST-FORM:
Create futures evaluating FIRST-FORK and REST-FORK.

Return whichever of these FINISHES-FIRST:
Either the FIRST-FUTURE-WINS, or
the REST-FUTURE-WINS.

'Define FIRST-FUTURE-WINS:

If the FIRST-FUTURE finishes first,

Return a list whose first is the value of the FIRST-FUTURE

and whose rest is REST-FUTURE, which may still be running.

Define REST-FUTURE-WINS, helping RACE:
If the REST-FUTURE finishes before the FIRST-FUTURE does,
Then, look at the value of the REST-FUTURE.

If It's empty, wait until the FIRST-FUTURE returns,
and return a list of FIRST-FUTURE.

If it's not empty,
Return a list whose first is

the first of the list returned by REST-FUTURE,
*and whose rest is

a RACE between
The value returned by FIRST-FUTURE, and

The rest of the list returned by REST-FUTURE.

Section 4. We would like to Implement Act I on a real parallel machine

Our experience with the present Act I implementation has taught us much about
how to conceptualize parallel computations and realize implementations of parallel
programs. We feel the technology will soon be ripe for implementing a language like

*. . Act 1 on a real network of parallel processors. Our group is proposing to construct
such a machine, called the Apiary [10 Implementation of Act I on an Apiary will
require solving additional problems which we have not addressed in this paper or in
the current implementation. These include transporting objects between processors,
load balancing and garbage collection. A preliminary simulation of the Apiary has
been constructed by Jeff Schiller, using several Lisp Machines, connected by a local
packet switching network.

ParaNolllmn In Act 1 4. We would lke to hlmen Act I on a real parallel mch ne
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